等待下一个秋

  • Spark
  • Flink
  • Hive
  • 数据仓库
  • ClickHouse
  • 收徒弟
  • Java
    • Spring
    • Mybatis
    • SpringBoot
    • 面试题
  • Python
    • Python基础
    • 爬虫
    • Numpy
    • matplotlib
    • Flask
  • 技术杂谈
    • Linux知识
    • Docker
    • Git教程
    • Redis教程
    • mysql
    • 前端
    • R语言
    • 机器学习
  • 关于我
  • 其它
    • 副业挣钱
    • 资料下载
    • 资料文档
专注于Hadoop/Spark/Flink/Hive/数据仓库等
关注公众号:大数据技术派,获取更多学习资料。
  1. 首页
  2. Spark
  3. 正文

Spark面试题(二)

2021年10月28日 3196点热度 0人点赞 0条评论

Spark系列面试题

  • Spark面试题(一)
  • Spark面试题(二)
  • Spark面试题(三)
  • Spark面试题(四)
  • Spark面试题(五)——数据倾斜调优
  • Spark面试题(六)——Spark资源调优
  • Spark面试题(七)——Spark程序开发调优
  • Spark面试题(八)——Spark的Shuffle配置调优

1、Spark有哪两种算子?

Transformation(转化)算子和Action(执行)算子。

2、Spark有哪些聚合类的算子,我们应该尽量避免什么类型的算子?

在我们的开发过程中,能避免则尽可能避免使用reduceByKey、join、distinct、repartition等会进行shuffle的算子,尽量使用map类的非shuffle算子。
这样的话,没有shuffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。

3、如何从Kafka中获取数据?

1)基于Receiver的方式
这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存
中的,然后Spark Streaming启动的job会去处理那些数据。
2)基于Direct的方式
这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地
查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来
获取Kafka指定offset范围的数据。

4、RDD创建有哪几种方式?

1)使用程序中的集合创建rdd
2)使用本地文件系统创建rdd
3)使用hdfs创建rdd
4)基于数据库db创建rdd
5)基于Nosql创建rdd,如hbase
6)基于s3创建rdd
7)基于数据流,如socket创建rdd

5、Spark并行度怎么设置比较合适?

spark并行度,每个core承载2~4个partition,如,32个core,那么64~128之间的并行度,也就是设置64~128个partion,并行读和数据规模无关,
只和内存使用量和cpu使用时间有关。

6、Spark如何处理不能被序列化的对象?

将不能序列化的内容封装成object。

7、collect功能是什么,其底层是怎么实现的?

driver通过collect把集群中各个节点的内容收集过来汇总成结果,collect返回结果是Array类型的,collect把各个节点上的数据抓过来,
抓过来数据是Array型,collect对Array抓过来的结果进行合并,合并后Array中只有一个元素,是tuple类型(KV类型的)的。

8、为什么Spark Application在没有获得足够的资源,job就开始执行了,可能会导致什么什么问题发生?

会导致执行该job时候集群资源不足,导致执行job结束也没有分配足够的资源,分配了部分Executor,该job就开始执行task,应该是task的调度线程
和Executor资源申请是异步的;如果想等待申请完所有的资源再执行job的:
需要将
spark.scheduler.maxRegisteredResourcesWaitingTime设置的很大;
spark.scheduler.minRegisteredResourcesRatio 设置为1,但是应该结合实际考虑
否则很容易出现长时间分配不到资源,job一直不能运行的情况。

9、map与flatMap的区别?

map:对RDD每个元素转换,文件中的每一行数据返回一个数组对象。
flatMap:对RDD每个元素转换,然后再扁平化。
将所有的对象合并为一个对象,文件中的所有行数据仅返回一个数组对象,会抛弃值为null的值。

10、Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么?

1)粗粒度:启动时就分配好资源, 程序启动,后续具体使用就使用分配好的资源,不需要再分配资源;优点:作业特别多时,资源复用率高,适合粗粒度;
缺点:容易资源浪费,假如一个job有1000个task,完成了999个,还有一个没完成,那么使用粗粒度,999个资源就会闲置在那里,资源浪费。
2)细粒度分配:用资源的时候分配,用完了就立即回收资源,启动会麻烦一点,启动一次分配一次,会比较麻烦。

11、driver的功能是什么?

1)一个Spark作业运行时包括一个Driver进程,也是作业的主进程,具有main函数,并且有SparkContext的实例,是程序的入口点;
2)功能:负责向集群申请资源,向master注册信息,负责了作业的调度,负责作业的解析、生成Stage并调度Task到Executor上。包括DAGScheduler,
TaskScheduler。

12、Spark技术栈有哪些组件,每个组件都有什么功能,适合什么应用场景?

可以画一个这样的技术栈图先,然后分别解释下每个组件的功能和场景
1)Spark core:是其它组件的基础,spark的内核,主要包含:有向循环图、RDD、Lingage、Cache、broadcast等,并封装了底层通讯框架,
是Spark的基础。
2)SparkStreaming是一个对实时数据流进行高通量、容错处理的流式处理系统,可以对多种数据源(如Kafka、Flume、Twitter、Zero和TCP 套接字)
进行类似Map、Reduce和Join等复杂操作,将流式计算分解成一系列短小的批处理作业。
3)Spark sql:Shark是SparkSQL的前身,Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行外部查询,
同时进行更复杂的数据分析。
4)BlinkDB :是一个用于在海量数据上运行交互式 SQL 查询的大规模并行查询引擎,它允许用户通过权衡数据精度来提升查询响应时间,其数据的精度
被控制在允许的误差范围内。
5)MLBase是Spark生态圈的一部分专注于机器学习,让机器学习的门槛更低,让一些可能并不了解机器学习的用户也能方便地使用MLbase。
MLBase分为四部分:MLlib、MLI、ML Optimizer和MLRuntime。
6)GraphX是Spark中用于图和图并行计算。

13、Spark中Worker的主要工作是什么?

主要功能:管理当前节点内存,CPU的使用状况,接收master分配过来的资源指令,通过ExecutorRunner启动程序分配任务,worker就类似于包工头,
管理分配新进程,做计算的服务,相当于process服务。
需要注意的是:
1)worker会不会汇报当前信息给master,worker心跳给master主要只有workid,它不会发送资源信息以心跳的方式给mater,master分配的时候就知道work,
只有出现故障的时候才会发送资源。
2)worker不会运行代码,具体运行的是Executor是可以运行具体appliaction写的业务逻辑代码,操作代码的节点,它不会运行程序的代码的。

14、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?

两者都是用mr模型来进行并行计算:
1)hadoop的一个作业称为job,job里面分为map task和reduce task,每个task都是在自己的进程中运行的,当task结束时,进程也会结束。
2)spark用户提交的任务成为application,一个application对应一个SparkContext,app中存在多个job,每触发一次action操作就会产生一个job。
这些job可以并行或串行执行,每个job中有多个stage,stage是shuffle过程中DAGSchaduler通过RDD之间的依赖关系划分job而来的,每个stage里面有多个task,
组成taskset有TaskSchaduler分发到各个executor中执行,executor的生命周期是和app一样的,即使没有job运行也是存在的,所以task可以快速启动读取内存
进行计算。
3)hadoop的job只有map和reduce操作,表达能力比较欠缺而且在mr过程中会重复的读写hdfs,造成大量的io操作,多个job需要自己管理关系。
4)spark的迭代计算都是在内存中进行的,API中提供了大量的RDD操作如join,groupby等,而且通过DAG图可以实现良好的容错。

15、RDD机制?

rdd分布式弹性数据集,简单的理解成一种数据结构,是spark框架上的通用货币。 所有算子都是基于rdd来执行的,不同的场景会有不同的rdd实现类,
但是都可以进行互相转换。rdd执行过程中会形成dag图,然后形成lineage保证容错性等。 从物理的角度来看rdd存储的是block和node之间的映射。

16、什么是RDD宽依赖和窄依赖?

RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)
1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用
2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition

17、cache和pesist的区别?

cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省程序运行时间
1) cache只有一个默认的缓存级别MEMORY_ONLY ,cache调用了persist,而persist可以根据情况设置其它的缓存级别;
2)executor执行的时候,默认60%做cache,40%做task操作,persist是最根本的函数,最底层的函数。

18、 cache后面能不能接其他算子,它是不是action操作?

cache可以接其他算子,但是接了算子之后,起不到缓存应有的效果,因为会重新触发cache。
cache不是action操作。

19、reduceByKey是不是action?

不是,很多人都会以为是action,reduce rdd是action

20、 RDD通过Linage(记录数据更新)的方式为何很高效?

1)lazy记录了数据的来源,RDD是不可变的,且是lazy级别的,且RDD之间构成了链条,lazy是弹性的基石。由于RDD不可变,所以每次操作就产生新的rdd,
不存在全局修改的问题,控制难度下降,所有有计算链条将复杂计算链条存储下来,计算的时候从后往前回溯 900步是上一个stage的结束,要么就checkpoint。
2)记录原数据,是每次修改都记录,代价很大如果修改一个集合,代价就很小,官方说rdd是粗粒度的操作,是为了效率,为了简化,每次都是操作数据集合,
写或者修改操作,都是基于集合的rdd的写操作是粗粒度的,rdd的读操作既可以是粗粒度的也可以是细粒度,读可以读其中的一条条的记录。
3)简化复杂度,是高效率的一方面,写的粗粒度限制了使用场景如网络爬虫,现实世界中,大多数写是粗粒度的场景。

标签: Spark 大数据
最后更新:2022年1月21日

等待下一个秋

待我代码写成,便娶你为妻!专注于Hadoop/Spark/Flink/Hive/数据仓库等,关注公众号:大数据技术派,获取更多学习资料。

打赏 点赞
< 上一篇
下一篇 >

文章评论

取消回复

等待下一个秋

待我代码写成,便娶你为妻!专注于Hadoop/Spark/Flink/Hive/数据仓库等,关注公众号:大数据技术派,获取更多学习资料。

搜一搜
微信
最新 热点 随机
最新 热点 随机
ClickHouse 自定义分区键 ClickHouse数据副本引擎 ClickHouse ReplacingMergeTree引擎 ClickHouse MergeTree引擎 clickhouse简介 Flink SQL管理平台flink-streaming-platform-web安装搭建
Docker 入门教程 第14讲:Flink Exactly-once 实现原理解析 Redis 数据类型 Hadoop面试题总结(三)——MapReduce 积累资源,胜于一切项目 人间自有真情在
标签聚合
算法 mysql Redis 大数据 Java 挣钱 R语言 Hive 数据仓库 Flink Python 书籍
文章归档
  • 2022年12月
  • 2022年11月
  • 2022年9月
  • 2022年7月
  • 2022年6月
  • 2022年5月
  • 2022年4月
  • 2022年3月
  • 2022年2月
  • 2022年1月
  • 2021年12月
  • 2021年11月
  • 2021年10月
  • 2021年9月
  • 2021年8月
  • 2021年6月
  • 2021年5月
  • 2021年4月
  • 2021年3月
  • 2021年2月
  • 2021年1月
  • 2020年12月
  • 2020年11月
  • 2020年10月
  • 2020年9月
  • 2020年8月
  • 2020年7月
  • 2020年5月
  • 2020年4月
  • 2020年1月
  • 2019年9月
  • 2019年8月
  • 2019年7月
  • 2019年6月
  • 2019年5月
  • 2019年4月
  • 2019年3月
  • 2019年1月
  • 2018年12月
  • 2017年5月

©2022 ikeguang.com. 保留所有权利。

鄂ICP备2020019097号-1

鄂公网安备 42032202000160号