等待下一个秋

  • Spark
  • Flink
  • Hive
  • 数据仓库
  • 收徒弟
  • Java
    • Spring
    • Mybatis
    • SpringBoot
    • 面试题
  • Python
    • Python基础
    • 爬虫
    • Numpy
    • matplotlib
    • Flask
  • 知识星球
  • 技术杂谈
    • Linux知识
    • Docker
    • Git教程
    • Redis教程
    • mysql
    • 前端
    • R语言
    • 机器学习
  • 其它
    • 副业挣钱
    • 关于我
    • 资料下载
    • 资料文档
专注于Hadoop/Spark/Flink/Hive/数据仓库等
关注公众号:大数据技术派,获取更多学习资料。
  1. 首页
  2. 技术杂谈
  3. R语言
  4. 正文

R语言里面的因子

2019年4月3日 8713点热度 0人点赞 0条评论

R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。
创建因子的函数介绍如下:

factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels
用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是
一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型
的x。

> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5

函数levels用来提取一个因子中可能的水平值:

> f <- factor(c(2, 4), levels=2:5) > f
[1] 2 4
Levels: 2 3 4 5
> levels(f)
[1] "2" "3" "4" "5"

因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。
1、创建一个因子。
例1:

>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y') 
>col <- factor(colour) 
>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容 
>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3')) 
>col_vec <- as.vector(col2) #转换成字符向量 
>col_num <- as.numeric(col2) #转换成数字向量 
>col3 <- factor(colour, levels = c('G', 'R'))

2、创建一个有序因子。
例1:

>score <- c('A', 'B', 'A', 'C', 'B') 
>score1 <- ordered(score, levels = c('C', 'B', 'A')); 
>score1
[1] A B A C B
Levels: C < B < A

3、用cut()函数将一般的数据转换成因子或有序因子。
例1:

>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98, 65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88) 
>exam1 <- cut(exam, breaks = 3) #切分成3组 >exam1
[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]
[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]
[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]
[28] (82,98] (50,66] (82,98]
Levels: (50,66] (66,82] (82,98]
>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组 
> exam2
[1] (89,100] (89,100] (0,59]   (79,89]  (79,89]  (69,79]  (89,100] (89,100]
[9] (69,79]  (69,79]  (69,79]  (59,69]  (89,100] (69,79]  (89,100] (59,69]
[17] (69,79]  (69,79]  (0,59]   (0,59]   (59,69]  (59,69]  (79,89]  (79,89]
[25] (89,100] (69,79]  (69,79]  (89,100] (0,59]   (79,89]
Levels: (0,59] (59,69] (69,79] (79,89] (89,100]
>attr(exam1, 'levels');
[1] "(50,66]" "(66,82]" "(82,98]"
>attr(exam2, 'levels');
[1] "(0,59]"   "(59,69]"  "(69,79]"  "(79,89]"  "(89,100]"
>attr(exam2, 'class')
[1] "factor"
#一个有序因子
> x <- factor(rep(1:5,3)) 
> ordered(x,labels = c('a1','a2','a3','a4','a5'))
[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
Levels: a1 < a2 < a3 < a4 < a5

关于因子就说到这里,实际用的非常少!对于逻辑数据以后会遇到再说,就不专门讲了。

标签: R语言
最后更新:2019年4月5日

等待下一个秋

待我代码写成,便娶你为妻!专注于Hadoop/Spark/Flink/Hive/数据仓库等,关注公众号:大数据技术派,获取更多学习资料。

打赏 点赞
< 上一篇
下一篇 >

文章评论

取消回复

等待下一个秋

待我代码写成,便娶你为妻!专注于Hadoop/Spark/Flink/Hive/数据仓库等,关注公众号:大数据技术派,获取更多学习资料。

搜一搜
微信
最新 热点 随机
最新 热点 随机
logstash同步mysql数据到elasticsearch Spring IOC 容器源码分析 elasticsearch修改字段类型 curl操作elasticsearch常用命令 Python通过orm操作mysql数据库 Python进程管理——Supervisor
Spring IOC 容器源码分析logstash同步mysql数据到elasticsearch
基于wordpress的本博客的搭建方法,遇到的问题与解决办法 如何使用MySQL Workbench将样本数据库导入到MySQL数据库服务器 第18讲:如何进行生产环境作业监控 创建数组 小象学院机器学习视频教程百度云 wordpress安装常见问题
标签聚合
R语言 Python 大数据 数据仓库 Redis 挣钱 mysql 算法 书籍 Flink Hive Java
文章归档
  • 2022年7月
  • 2022年6月
  • 2022年5月
  • 2022年4月
  • 2022年3月
  • 2022年2月
  • 2022年1月
  • 2021年12月
  • 2021年11月
  • 2021年10月
  • 2021年9月
  • 2021年8月
  • 2021年6月
  • 2021年5月
  • 2021年4月
  • 2021年3月
  • 2021年2月
  • 2021年1月
  • 2020年12月
  • 2020年11月
  • 2020年10月
  • 2020年9月
  • 2020年8月
  • 2020年7月
  • 2020年5月
  • 2020年4月
  • 2020年1月
  • 2019年9月
  • 2019年8月
  • 2019年7月
  • 2019年6月
  • 2019年5月
  • 2019年4月
  • 2019年3月
  • 2019年1月
  • 2018年12月
  • 2017年5月

©2022 ikeguang.com. 保留所有权利。

鄂ICP备2020019097号-1

鄂公网安备 42032202000160号