1、什么是Hive
Hive是由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
本质是:将HQL转化成MapReduce程序
1)Hive处理的数据存储在HDFS
2)Hive分析数据底层的实现是MapReduce
3)执行程序运行在Yarn上
2、Hive优缺点
优点
:
1) 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
2) 避免了去写MapReduce,减少开发人员的学习成本。
3) Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
4) Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
5) Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
缺点
:
1)Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长
2)Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗
3、Hive架构原理
1)用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
2)元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
3)Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
4)驱动器:Driver
(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):对逻辑执行计划进行优化。
(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
Hive系列文章
文章评论